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Abstract

The videographic method is a simulation and recon-
struction procedure that uses a statistical math-
ematical approach and computer graphics to aid the
interpretation of scattering (X-ray, electron, neutron)
from a disordered crystal. Based on the principles of
optical transforms, and in contrast to it, atoms with
different scattering power are represented as picture
elements (pixels) with different grey levels. Compared
with optical transforms, this method has the special
advantage that holes of infinitely small radii can simu-
late different scattering powers in a mask. With the
application of a statistical mathematical approach
(combination probabilities), various scatterers, e.g.
atoms, structure variants or domains, can be dis-
tributed in a two- or three-dimensional model. A
Fourier transformation of the simulated model
(diffraction pattern) can be calculated in a few
seconds using an array processor and displayed for
comparison with experiments. Real-structure image
reconstruction can also be performed by amplitude
and phase manipulation. As a starting model for a
reconstruction, a randomly disordered structure is
assumed. Under this assumption, a monotone diffuse
background is obtained in the diffraction pattern. The
principal idea in a reconstruction of an unknown real
structure is that the diffuse regions of a partly ordered
structure are a subset of the monotone diffuse back-
ground for a random disorder.

1. Introduction

The physical properties of crystalline solids (elec-
trical, mechanical, optical erc.) are closely dependent
on the chemical-bond type or their atomic structures.
The deviation from the periodic arrangement of the
atoms in the structure influences the physical proper-
ties compared with an ordered crystal.

Examples of disordered crystal structures are point
defects, stacking faults, modulations, short-range
order and domain formations with different bound-
aries. The dimension of disordered regions in crystals
ranges between the macroscopic and submicroscopic
scales.

Besides Bragg reflexions, the diffraction pattern of
adisordered crystal shows diffuse components and/or
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satellite reflexions. The distribution of the satellite
reflexions (nonstrictly periodic modulation) or the
diffuse components indicates a certain type of dis-
order.

The influence of crystal-structure disorder on the
scattered wave (electron, X-ray and neutron) has led
many authors to derive mathematical formulations
for the different types of disorder problems (Guinier,
1942; Daniel & Lipson 1944; Jagodzinski, 1949,
1964a, b, 1987, Kunze, 1959; Korekawa, 1967;
Korekawa, Nissen & Philipp, 1970; de Wolff, 1974;
Cowley, 1975; Bohm, 1977; Cowley, Cohen, Salamon
& Wuensch, 1979; Boysen, Frey & Jagodzinski, 1984).

Parallel to the mathematical developments of the
scattering from a disordered crystal, other authors
have developed the technique of using optical
analogues (Fraunhofer diffraction) to aid the inter-
pretation of X-ray diffractions (Bragg, 1938).

For this purpose, the atoms are replaced by holes
in a mask and X-rays by a coherent light source. The
deviations from a regular lattice are simulated by
varying the positions of the holes. Atoms with
different scattering powers are simulated as holes of
different radii. One of the earliest applications of
disorder problems was carried out by Taylor, Hinde
& Lipson (1951). In a second paper, Lipson & Taylor
(1951) applied their method successfully to several
organic compounds. The mask production was fur-
ther developed and refined by Harburn (1973) and
Harburn, Miller & Welberry, (1974).

When the optical transform method is used to simu-
late two different scatterers (atoms with different scat-
tering factors), two holes with different radii must be
punched and distributed in the mask. The larger hole
then represents the atom with the higher scattering
power (Amords & Amords, 1968; Woolfson, 1970).
The main problem is that, when increasing the scatter-
ing power by increasing the size of the hole, the
angular rate of fall-off will also be increased. This is
the reverse of the behaviour of X-ray atomic scattering
factors, where usually the higher the atomic number,
the more compact it is and therefore the slower is the
fall-off. Moreover, the intensities of the Fraunhofer
diffraction pattern begin to oscillate more rapidly
(Amorés & Amoros, 1968).

The above-mentioned disadvantage of the optical
transforms prevents accurate simulation of complex
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disorder phenomena, especially when domains with
different scatterers are distributed in a disordered
matrix or a density modulation of the scattering power
(Bohm, 1977) is present. For these reasons, most
applications of the optical transforms were performed
using a unit size for the scatterer (holes or black dots
by the photographic technique) (Amords & Amords,
1968; Welberry & Galbraith, 1973; Harburn, Taylor
& Welberry, 1975). For more details, a review on the
applicability of the optical diffraction technique for
simulation or reconstruction is given by Rahman
(1991).

Nevertheless, the application of the optical Fourier
transform to simulate a particular disorder state in
crystals can explain some complicated disorder
phenomena. This is pointed out by Welberry & Ray-
mond (1980) and Welberry (1985, 1986).

In the present investigation, a new method will be
introduced that avoids the above-mentioned disad-
vantages of optical transforms. Based on a statistical
mathematical formulation, the method allows a simu-
lation or a reconstruction of the real structure of a
disordered crystal using advanced computer graphics.

The atoms are represented as pixels (picture ele-
ments) with different grey levels. A pixel can be
considered to be analogous to a hole with an infinitely
small radius. The corresponding radius of the airy
disk is infinitely large. Pixels with different grey levels
but the same size (different scattering powers) behave
as point sources that radiate spherical waves when
irradiated with ‘light’. With use of a pixel-oriented
computer-graphic adaptor the structure image can be
stored (on video RAM) and displayed on a video-
graphic monitor. The Fourier transform of the ‘struc-
ture’ image stored in memory is performed using
parallel computing (with an array processor) in a few
seconds and then displayed on a graphic monitor for
a comparison with the experimental diffraction pat-
tern. In the following, the method will be referred to
as the videographic method (Rahman, 1989, 1991).

The first part of this investigation deals with a
mathematical approach to the simulation and recon-
struction of disordered structures. This will be
accompanied by several specific examples. In two
forthcoming papers (Rahman, 19934, b), the video-
graphic method is applied to two problems of crystal
disorder of different origins, namely the binary com-
pound AuCu; and the mineral mullite Al,-
[AIZ+2xSi2f2x]Ol()—x-

2. Experimental

The videographic method is a simulation procedure
that uses computer techniques to aid the interpreta-
tion of scattering (X-ray, electron, neutron) by a
disordered crystal. Therefore, a special hardware
component (Rahman, 1989; Rahman & Unser, 1990)
and a software package are needed to simulate or

reconstruct a certain distribution of scatterers (Rah-
man, 1991).

The system is based on a personal computer (IBM
PC-AT) equipped with two special boards, namely a
graphic adaptor and an array processor. Both boards
are connected to the PC through the AT-bus interface.
The graphic adaptor is able to display and store an
image of at least 512x 512 pixels with a depth of
8 bits (256 grey levels). The array processor is used
to calculate the fast Fourier transform (FFT) of the
structure image stored in the video RAM of the
graphic adaptor. The transformed (diffraction) image
can be immediately displayed on a high-resolution
monitor and compared with the experimental
diffraction pattern. Both boards communicate with
each other through an external port with a high
data-transfer rate. A full-frame FFT (512x512) is
calculated in 4s. The transformed image of a dis-
ordered-structure model is stored in two arrays. The
first array contains the real part and the second
contains the imaginary part of a forward Fourier
transformation. In this case, allowance is made to
manipulate the two parts separately, which is a
significant advantage for image reconstruction
compared with optical transforms.

The software enables the user to generate pixel
graphics with different grey levels easily and rapidly
(interactively) to simulate various scatterers (mask).
For complicated disorder models, a statistical method
(see following section) is developed and programmed
to calculate a distribution function for particular dis-
order types. Three-dimensional real-structure models
can also be simulated and implemented for the calcu-
lation of short-range-order parameters or the evalu-
ation of any vector correlation (Rahman, 1993q, b).

3. Mathematical survey

A picture element (pixel) of a two-dimensional image
can be described as a function s(x, y) in which s
represents the intensity in grey-level quantization and
(x, y) are its coordinates. An image with L rows and
R columns can be digitally stored or displayed as a
two-dimensional array:

5(0,0) s(0,R-1)

S(X, Y)= : - : - (1)
s(L—1,0) ... (L-1,R-1)

The forward discrete Fourier transformation of an
image gives the spatial frequency distribution in the
Fourier space with the continuous coordinates u
and v,

Qu, v) = F[S(x, )]

L 1 R-1

=(LR)™" ¥ ¥ S(x,y)

x=0y-0

xexp[—2mi(xu/L+yv/R)]. (2)
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Table 1. Scheme for horizontal and vertical

combination probabilities

Horizontal combinations

o, ¥)  @ix,y) on(x, y)
@1(x, y) :W“ :w,2 :wl"
‘Pz()_"}’) WZI ‘_sz Wzn
eaxy) W o "W, D 'w,

Vertical combinations

ei(xy)  @iAxy) 0.(x,y)
ei(x, y) Wi ‘W, ‘W,
¢2(.X, y) u‘yu lv“‘/u tee ¢ WZn
enl(x,y) "W, ‘W, . ‘W,

tain probabilities determined by the distribution func-
tion of J. The distribution function is defined through
the conditional combination probabilities given in
Table 1. The probabilities of a combination W, of
two variants ¢;(x, , z) are given in the table for all
three translation directions. For a two-dimensional
simulation of n possible structure variants, the combi-
nation probabilities for the horizontal (*W,) and ver-
tical ("W),) directions can be tabulated as shown in
Table 1.

In the case of a three-dimensional simulation, a
third table is needed for the probabilities of combina-
tion in the z direction. In this case, a three-sided
combination probability is possible. The sum of the
probabilities in each row of the tables is equal to
100%. A statistical distribution in the horizontal and
vertical directions can be obtained by setting all prob-
abilities to the same value. A forbidden combination
between two structure variants can be realized by
setting their combination probabilities equal to zero
(hwl‘i = v"Vji =0).

The real ‘structure’ image S(L, M, N) resulting
from a three-dimensional simulation using combina-
tion probabilities W of different structure variants
or configurations can be expressed as

L M N

S(Lv Ma N)= Z Z Z (plmn(-]lmn)a

=1 m=1n=1

(6)

where I, m, n are integers, @imun(Jim,) is the structure
variant of type J at an Imn position and J,,, is the
random variable for an Imn position.

Different distributions of ¢;(x, y, z) can be obtained
by varying the values of "W, and “W;. In contrast to
other simulation procedures reviewed by Welberry
(1985), not only atoms or structure variants (configur-
ations), but also domains with different scatterers or
clusters can be distributed within a disordered matrix
(Rahman, 1991). Moreover, no restrictions are
specified for the magnitude of any correlation vector.

The resulting simulation of (6) can be immediately
displayed and stored as a videographic image. To
check the result of a simulation, the Fourier transfor-

mation of the real-structure image S(L, M, N) must
be compared with the experimental diffraction
pattern.

The implementation of the above-mentioned statis-
tical method using software to simulate the real
structure from the average structure is discussed by
Rahman (1991, pp. 17-19) in more detail.

3.2. Reconstruction of a real structure

Reconstruction in optical Fourier transforms is a
well established technique for image enhancement.
For this purpose, a second mask must be produced
and placed in the near focal plane of the first lens to
filter superimposed noise signals (spatial-frequency
or optical filtering). However, this technique is
difficult to handle and requires high precision in the
mask production. Moreover, the manipulation of
both amplitude and phase [(2)] is theoretically not
possible (Beeston, Horne & Markham 1972).

Filter operations for the reconstruction are per-
formed in reciprocal space (frequency space). For
this purpose, (4) is Fourier transformed and written as

Flo(x, y)]1=Q(u, v) g+ AQ(u, v)y, (7)

F[@(x, y)] is the Fourier transformation of the real
structure, Q(u, v)p is the scattering amplitude of the
Bragg reflexion and AQ(u, v), is the scattering
amplitude of the diffuse regions.

Besides the Bragg peaks, partly ordered structures
show diffuse scattering in their diffraction pattern.
Particular detail can be enhanced in an image
S(X, Y) by multiplying Q(u, v)p and AQ(u, v), by
the transfer functions G,(u, v) and G,(u, v), respec-
tively. The value of the transfer functions can be
chosen so that either the diffuse regions or the Bragg
reflexions are accounted for by a backward Fourier
transformation. G(u, v) can also be chosen to transfer
only a part of the diffuse region (Rahman, 1989).

The transfer function can be expressed as a convo-
lution (*) between the reciprocal-lattice function
F(u, v) and a window function W(u, v),

G(u, v)= F(u, v)*W(u, v), (8)

where u and v are continuous coordinates and F(u, v)
is the well known reciprocal-lattice delta function,

F(u,v)=Y % 8(u—ha*, v—kb*). (9)
kK

The window function W(u, v) is responsible for
the coordinate of the area that is considered for the
back transformation.

By application of the above-mentioned reconstruc-
tion procedure, a real difference image S'(x, y) is
obtained (Rahman & Weichert, 1990):

S'(x, y)

= F[Q(u, v)sG,(u, v)+ AQ(u, v) ,G(u, v)]. (10)
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procedure, the images of Fig. 10(c) are Fourier trans-
formed as shown in Fig. 10(d). The positions of the
diffuse superlattice reflexions are fully in accordance
with the simulation given in Fig. 9 for different anti-
phase-domain types.

(b) Density modulation. For the reconstruction of
a sine-wave modulation of the scattering power, an
identical start model as in the foregoing example is
used (Fig. 1la). The positions of the satellite
reflexions for two different modulation directions are
selected symmetrically with respect to the Bragg
reflexions as shown in Fig. 11(b) (Korekawa, 1967).
A good match for a density modulation is achieved
by assigning values 16 and 1 to G,(u, v) and G,(y, v),
respectively. The reconstructed real-structure images
are shown in Fig. 11(c) for a modulation direction
parallel to [010] [Fig. 11(c), left] and [110] [Fig.
11(c), right]. A forward Fourier transformation of
the reconstructed images results in diffraction pat-
terns (Fig. 11d) indicating the type of modulation as
reported by Korekawa (1967).

(¢) Modulation through probability variation of the
site occupancy. In the foregoing example, the satellite
reflexions are positioned symmetrically with respect
to a present Bragg reflexion. In several other cases
(mullite AL[Al>42xS1,_5,]0,0_x; Guse & Saalfeld,
1976; Cameron, 1977), the satellite reflexions are posi-
tioned symmetrically with respect to an absent Bragg
reflexion. An example of such a case is reconstructed
in Fig. 12. The regions for the reconstruction are
positioned on the left- and right-hand sides of the
absent 110 reflexion groups (Fig. 12b). From the
reconstructed image (Fig. 12¢), it can easily be seen
that the intensity in a horizontal row varies smoothly.
This observation can be interpreted (Bohm, 1977) as
a variation of the probability of a site occupancy,
which represents a special case of density modulation
(Rahman & Weichert, 1990).

5. Concluding remarks

The examples discussed in §4 demonstrate the wide
application range of the videographic method. By
representing the real structure as a videographic
image, the whole content of a structure configuration
can be displayed as picture elements with different
grey levels. By this procedure, complicated disorder
phenomena in which more than one disorder mechan-
ism is present are able to be investigated.

Both simulation and reconstruction can be applied
to discover a real-structure configuration. Also, a
combination of both methods is useful. Other interest-
ing features include a facility to manipulate phase
and amplitude by a reconstruction and the simulation
of three-dimensional models using three-sided combi-

nation probabilities (Rahman, 19934, b). From such
three-dimensional simulations, vector correlations
can be estimated and compared with experimental
results.
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Abstract

If the videographic simulation method is applied, the
real structure configuration of the domains formed
in a partially ordered AuCu; crystal is established.
Each domain is formed by four ordered AuCu,
blocks. The blocks are interconnected crosswise by
two different domain boundaries, namely the pre-
ferred antiphase domain boundary and the new
domain interface structure (I cells of the composition
Au,Cuq). Six symmetry-related domains exist with
the above-mentioned domain structure. An AuCu,
crystal that shows the characteristic two- and four-
fold splitting of the superlattice reflexions in its
diffraction pattern (of partial order) contains at least
two such domain configurations at 90° relative to each
other. A two- and three-dimensional simulation using
different combination probabilities and structure
variants allows a quantitative description of the real
configuration of the AuCuj structure at different tem-
peratures to be made.

1. Introduction

Many X-ray investigations have been made to study
the order/disorder transitions of binary alloys. These
include the interpretation of the diffuse scattering
from disordered crystals. For this purpose, simple
cubic AB and AB; structures (intermetallic phases)
were used. A classic example is the copper-gold alloy
AuCu;. This compound exhibits, compared to other
intermetallic compounds e.g. B-CuZn, a relatively
low critical temperature (7,=663 K) and a large
difference in scattering powers (fa,=2.8 f-,). The
above-mentioned properties make AuCu; an interest-
ing phase for many investigations in the field of short-
and long-range-order phenomena (Sykes & Jones,
1936, Jones & Sykes, 1938; Cowley, 1950; Chapman,
1956; Wilson, 1962; Guinier, 1963; Warren, 1968).
AuCu, exhibits a simple cubic ordered structure at
room temperature (a=3.72 A, see Fig. 1a). With
increasing temperature the Au atoms can exchange
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their sites with the Cu atoms (Fig. 1). The intensities
of the Bragg reflexions with mixed indices (superlat-
tice reflexions) decrease with increasing temperature.
At the critical temperature, long-range order vanishes
(§=0) and the intensities of the superlattice
reflexions (1,44, 1110, Isgo €tc.) are almost zero. Above
T., only short-range-order phenomena are present
(Edmunds, Hinde & Lipson, 1947; Wilson, 1947;
Cowley, 1950; Edmunds & Hinde, 1952; Chapman,
1956).

Around the positions of the superlattice reflexions
a diffuse background with a characteristic distribution
(shape) is present (Fig. 2c) (Wilson, 1947; Cowley,
1950).

An AuCu; crystal cooled from about 873 K to a
temperature below T, (about 373 K) gives rise to a
fine structure of the superlattice reflexions (of partial
order) as schematically shown in Fig. 2(b) (Raether,
1952; Yamaguchi, Watanabe & Ogawa, 1961; Sinclair
& Thomas, 1975). Inspection of the a*b* plane
reveals that superlattice reflexions with h and k mixed

Fig. 1. (a) AuCu; structure variants. () Antiphase domain bound-
ary of the favoured type. (¢), (d) Antiphase domain boundary
of nonfavoured types.
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