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Abstract 

The videographic method is a simulation and recon- 
struction procedure that uses a statistical math- 
ematical approach and computer graphics to aid the 
interpretation of scattering (X-ray, electron, neutron) 
from a disordered crystal. Based on the principles of 
optical transforms, and in contrast to it, atoms with 
different scattering power are represented as picture 
elements (pixels) with different grey levels. Compared 
with optical transforms, this method has the special 
advantage that holes of infinitely small radii can simu- 
late different scattering powers in a mask. With the 
application of a statistical mathematical approach 
(combination probabilities), various scatterers, e.g. 
atoms, structure variants or domains, can be dis- 
tributed in a two- or three-dimensional model. A 
Fourier transformation of the simulated model 
(diffraction pattern) can be calculated in a few 
seconds using an array processor and displayed for 
comparison with experiments. Real-structure image 
reconstruction can also be performed by amplitude 
and phase manipulation. As a starting model for a 
reconstruction, a randomly disordered structure is 
assumed. Under this assumption, a monotone diffuse 
background is obtained in the diffraction pattern. The 
principal idea in a reconstruction of an unknown real 
structure is that the diffuse regions of a partly ordered 
structure are a subset of the monotone diffuse back- 
ground for a random disorder. 

I. Introduction 

The physical properties of crystalline solids (elec- 
trical, mechanical, optical etc.) are closely dependent 
on the chemical-bond type or their atomic structures. 
The deviation from the periodic arrangement of the 
atoms in the structure influences the physical proper- 
ties compared with an ordered crystal. 

Examples of disordered crystal structures are point 
defects, stacking faults, modulations, short-range 
order and domain formations with different bound- 
aries. The dimension of disordered regions in crystals 
ranges between the macroscopic and submicroscopic 
scales. 

Besides Bragg reflexions, the diffraction pattern of 
a disordered crystal shows diffuse components and /o r  
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satellite reflexions. The distribution of the satellite 
reflexions (nonstrictly periodic modulation) or the 
diffuse components indicates a certain type of dis- 
order. 

The influence of crystal-structure disorder on the 
scattered wave (electron, X-ray and neutron) has led 
many authors to derive mathematical formulations 
for the different types of disorder problems (Guinier, 
1942; Daniel & Lipson 1944; Jagodzinski, 1949, 
1964a, b, 1987; Kunze, 1959; Korekawa, 1967, 
Korekawa, Nissen & Philipp, 1970; de Wolff, 1974; 
Cowley, 1975; BShm, 1977; Cowley, Cohen, Salamon 
& Wuensch, 1979; Boysen, Frey & Jagodzinski, 1984). 

Parallel to the mathematical developments of the 
scattering from a disordered crystal, other authors 
have developed the technique of using optical 
analogues (Fraunhofer diffraction) to aid the inter- 
pretation of X-ray diffractions (Bragg, 1938). 

For this purpose, the atoms are replaced by holes 
in a mask and X-rays by a coherent light source. The 
deviations from a regular lattice are simulated by 
varying the positions of the holes. Atoms with 
different scattering powers are simulated as holes of 
different radii. One of the earliest applications of 
disorder problems was carried out by Taylor, Hinde 
& Lipson (1951). In a second paper, Lipson & Taylor 
(1951) applied their method successfully to several 
organic compounds. The mask production was fur- 
ther developed and refined by Harburn (1973) and 
Harburn, Miller & Welberry, (1974). 

When the optical transform method is used to simu- 
late two different scatterers (atoms with different scat- 
tering factors), two holes with different radii must be 
punched and distributed in the mask. The larger hole 
then represents the atom with the higher scattering 
power (Amor6s & Amor6s, 1968; Woolfson, 1970). 
The main problem is that, when increasing the scatter- 
ing power by increasing the size of the hole, the 
angular rate of fall-off will also be increased. This is 
the reverse of the behaviour of X-ray atomic scattering 
factors, where usually the higher the atomic number, 
the more compact it is and therefore the slower is the 
fall-off. Moreover, the intensities of the Fraunhofer 
diffraction pattern begin to oscillate more rapidly 
(Amor6s & Amor6s, 1968). 

The above-mentioned disadvantage of the optical 
transforms prevents accurate simulation of complex 
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disorder phenomena,  especially when domains with 
different scatterers are distributed in a disordered 
matrix or a density modulation of the scattering power 
(B6hm, 1977) is present• For these reasons, most 
applications of the optical transforms were performed 
using a unit size for the scatterer (holes or black dots 
by the photographic technique) (Amor6s & Amor6s, 
1968; Welberry & Galbraith, 1973; Harburn, Taylor 
& Welberry, 1975). For more details, a review on the 
applicability of the optical diffraction technique for 
simulation or reconstruction is given by Rahman 
(1991). 

Nevertheless, the application of the optical Fourier 
transform to simulate a particular disorder state in 
crystals can explain some complicated disorder 
phenomena. This is pointed out by Welberry & Ray- 
mond (1980) and Welberry (1985, 1986). 

In the present investigation, a new method will be 
introduced that avoids the above-mentioned disad- 
vantages of optical transforms. Based on a statistical 
mathematical formulation, the method allows a simu- 
lation or a reconstruction of the real structure of a 
disordered crystal using advanced computer graphics• 

The atoms are represented as pixels (picture ele- 
ments) with different grey levels. A pixel can be 
considered to be analogous to a hole with an infinitely 
small radius. The corresponding radius of the airy 
disk is infinitely large. Pixels with different grey levels 
but the same size (different scattering powers) behave 
as point sources that radiate spherical waves when 
irradiated with 'light'. With use of a pixel-oriented 
computer-graphic adaptor the structure image can be 
stored (on video RAM) and displayed on a video- 
graphic monitor. The Fourier transform of the 'struc- 
ture' image stored in memory is performed using 
parallel computing (with an array processor) in a few 
seconds and then displayed on a graphic monitor for 
a comparison with the experimental diffraction pat- 
tern• In the following, the method will be referred to 
as the videographic method (Rahman, 1989, 1991). 

The first part of this investigation deals with a 
mathematical approach to the simulation and recon- 
struction of disordered structures• This will be 
accompanied by several specific examples• In two 
forthcoming papers (Rahman, 1993a, b), the video- 
graphic method is applied to two problems of crystal 
disorder of different origins, namely the binary com- 
pound AuCu~ and the mineral mullite AI2- 
[Al2+zxSi2-2x]Olo-x. 

2. Experimental 

The videographic method is a simulation procedure 
that uses computer techniques to aid the interpreta- 
tion of scattering (X-ray, electron, neutron) by a 
disordered crystal. Therefore, a special hardware 
component (Rahman, 1989; Rahman & Unser, 1990) 
and a software package are needed to simulate or 

reconstruct a certain distribution of scatterers (Rah- 
man, 1991)• 

The system is based on a personal computer (IBM 
PC-AT) equipped with two special boards, namely a 
graphic adaptor and an array processor. Both boards 
are connected to the PC through the AT-bus interface. 
The graphic adaptor is able to display and store an 
image of at least 512x512 pixels with a depth of 
8 bits (256 grey levels). The array processor is used 
to calculate the fast Fourier transform (FFT) of thd 
structure image stored in the video RAM of the 
graphic adaptor. The transformed (diffraction) image 
can be immediately displayed on a high-resolution 
monitor and compared with the experimental 
diffraction pattern. Both boards communicate with 
each other through an external port with a high 
data-transfer rate. A full-frame FFT (512x512) is 
calculated in 4 s. The transformed image of a dis- 
ordered-structure model is stored in two arrays. The 
first array contains the real part and the second 
contains the imaginary part of a forward Fourier 
transformation. In this case, allowance is made to 
manipulate the two parts separately, which is a 
significant advantage for image reconstruction 
compared with optical transforms. 

The software enables the user to generate pixel 
graphics with different grey levels easily and rapidly 
(interactively) to simulate various scatterers (mask). 
For complicated disorder models, a statistical method 
(see following section) is developed and programrfied 
to calculate a distribution function for particular dis- 
order types. Three-dimensional real-structure models 
can also be simulated and implemented for the calcu- 
lation of short-range-order parameters or the evalu- 
ation of any vector correlation (Rahman, 1993a, b). 

3. Mathematical survey 

A picture element (pixel) of a two-dimensional image 
can be described as a function s (x ,y)  in which s 
represents the intensity in grey-level quantization and 
(x, y) are its coordinates. An image with L rows and 
R columns can be digitally stored or displayed as a 
two-dimensional array: 

s(0, 0) . . .  s ( O , R - 1 )  

S ( X ,  Y)= (1) 
s ( L - l , O )  . ." ( L - 1 ,  R - 1 )  

The forward discrete Fourier transformation of an 
image gives the spatial frequency distribution in the 
Fourier space with the continuous coordinates u 
and v, 

O(u, v ) = ~ [ S ( x , y ) ]  

L I R - I  

= ( L R ) - '  E E S(x,y). 
x = 0  y - 0  

xexp[-2rri(xu/L+yv/R)]. (2) 
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A videographic representation of four different 
structures with various scatterers (pixel intensities) 
distributed periodically in a two-dimensional lattice 
are shown in Fig. l (a) .  The upper left image in Fig. 
l (a)  represents a projection of an ordered A u C u 3  
structure and the upper right represents an NaC1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; ~ ; ' ; ' ; r . 7 , ? ; 7 2 ? ; ~ ; ' ; r ; 7 ; f ; 7 ;  

(a) 

structure. The lower two images in the same figure 
show the simulation of two hypothetical complex 
structures. The corresponding forward Fourier trans- 
formations or 'diffraction patterns' (digital trans- 
forms) are shown in Fig. l(b). 

A backward (inverse) Fourier transformation of 
Q(u, v) reverses the images of Fig. l (a) ,  

S(x, y ) =  ~[ Q(u, v)] 

L--1 R--1 

= 2 2 Q(u, v) 
u=O v=O 

x exp [2zri(xu/L+yv/R)]. (3) 

Q(u, v) is a complex quantity whose real and 
imaginary parts are stored separately on the array- 
processor board. The software allows interactive 
manipulation of the stored data. In contrast to optical 
transforms, this provides a valuable facility for image 
reconstruction. 

If a certain type of structure disorder is present, 
Q(u, v) exhibits, besides the discrete maxima (Bragg 
reflexions), other more or less diffuse components. 
The scattering potential ~0(x, y) of a disordered struc- 
ture can be expressed (Cowley, 1975) as the sum of 
the average potential (~o (x, y)) and the deviation from 
this average potential A~o(x, y), 

~o(x, y)=(~o(x, y))+ A~o(x, y). (4) 

~0(x, y) is equivalent to the electron density in the 
ease of X-ray diffraction or to the scattering potential 
in electron diffraction. ~o(x, y) is a real function and 
can be displayed as pixels with different grey levels. 

(b) 

Fig. 1. (a) Videographic representation of four two-dimensional 
ordered structures with different scatterers (pixel intensities). 
(b) Videographic display of the Fourier transformations (FT) 
of(a).  

3.1. Simulation of the real structures 

An average structure (~o(x, y)) can be described as 
a superposition of n possible structure variants or 
configurations (Rahman, 1991), 

(q~(x, y, z))= N -1 ~. ~j(x, y, z)Nj, (5) 
j = l  

where N is the total number of unit cells and /qj is 
the number of structure variants j. 

The number of possible structure variants n from 
a given average structure can be determined by apply- 
ing the general crystal chemical rules (interatomic 
distances, coordination number, bonding energy) 
during its deeonvolution. The real structure consisting 
of n possible structure variants is given by a certain 
three-dimensional distribution of /Vj cells (in 
sequence) in the lattice. This can be mathematically 
described by a distribution function in which all 
variants need not necessarily be present with the same 
probability. 

To simulate the real structure from its average 
structure, %(x, y, z) must be chosen using a random 
variable J taking the values j (j = 1 , . . . ,  n) with cer- 
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Table 1. Scheme for horizontal and 
combination probabilities 

Horizontal combinations 
C,(x, y) ¢2(x,y) ... ¢,(x,y) 

q~l(x, y) hw~t hW~2 ... hw~,, 
~p2( .x, y )  hW2, "W22 . . .  hW2, 

• . • 

~o,,(x,y) hW,, hw,, 2 . .:  "W,,,, 

Vert ical  c o m b i n a t i o n s  
~ol(x, y )  ~o2(x, y )  . . .  q~,,(x, y )  

~p~(x, y )  °wt~ "w~2 . . .  °wt ,  , 
,v2(x., y) ~w~, ~w2, ... ~w~. 

". 

~°( , , .y)  oWo, ~wo2 ... ~woo 

vertical 

tain probabilities determined by the distribution func- 
tion of J. The distribution function is defined through 
the conditional combination probabilities given in 
Table 1. The probabilities of a combination Wji of 
two variants ~oj(x, y, z) are given in the table for all 
three translation directions. For a two-dimensional 
simulation of n possible structure variants, the combi- 
nation probabilities for the horizontal (h Wj;) and ver- 
tical (~Wji) directions can be tabulated as shown in 
Table 1. 

In the case of a three-dimensional simulation, a 
third table is needed for the probabilities of combina- 
tion in the z direction. In this case, a three-sided 
combination probability is possible. The sum of the 
probabilities in each row of the tables is equal to 
100%. A statistical distribution in the horizontal and 
vertical directions can be obtained by setting all prob- 
abilities to the same value. A forbidden combination 
between two structure variants can be realized by 
setting their combination probabilities equal to zero 
(hw,, = ° %  =0). 

The real 'structure' image S(L, M, N)  resulting 
from a three-dimensional simulation using combina- 
tion probabilities Wj~ of different structure variants 
or configurations can be expressed as 

L M N 

S(L, M, N)  = Z Z Z ¢,,,,,,(J,,,,,,), (6) 
I=1 m = l  n = l  

where l, m, n are integers, tPtm,(Jtm,) is the structure 
variant of type J at an Imn position and J~,,, is the 
random variable for an lmn position. 

Different distributions of ~pj (x, y, z) can be obtained 
by varying the values of h Wj~ and ~ Wj~. In contrast to 
other simulation procedures reviewed by Welberry 
(1985), not only atoms or structure variants (configur- 
ations), but also domains with different scatterers or 
clusters can be distributed within a disordered matrix 
(Rahman, 1991). Moreover, no restrictions are 
specified for the magnitude of any correlation vector. 

The resulting simulation of (6) can be immediately 
displayed and stored as a videographic image. To 
check the result of a simulation, the Fourier transfor- 

mation of the real-structure image S(L, M, N)  must 
be compared with the experimental diffraction 
pattern. 

The implementation of the above-mentioned statis- 
tical method using software to simulate the real 
structure from the average structure is discussed by 
Rahman (1991, pp. 17-19) in more detail. 

3.2. Reconstruction of a real structure 

Reconstruction in optical Fourier transforms is a 
well established technique for image enhancement• 
For this purpose, a second mask must be produced 
and placed in the near focal plane of the first lens to 
filter superimposed noise signals (spatial-frequency 
or optical filtering). However, this technique is 
difficult to handle and requires high precision in the 
mask production. Moreover, the manipulation of 
both amplitude and phase [(2)] is theoretically not 
possible (Beeston, H o r n e &  Markham 1972). 

Filter operations for the reconstruction are per- 
formed in reciprocal space (frequency space). For 
this purpose, (4) is Fourier transformed and written as 

,~[~p(x,y)]=Q(u,V)B+AQ(u,V)d,  (7) 

~ [ ¢ ( x ,  y)] is the Fourier transformation of the real 
structure, Q(u, v)B is the scattering amplitude of the 
Bragg reflexion and AQ(u, v), is the scattering 
amplitude of the diffuse regions. 

Besides the Bragg peaks, partly ordered structures 
show diffuse scattering in their diffraction pattern. 
Particular detail can be enhanced in an image 
S(X, Y) by multiplying Q(u, V)B and AQ(u, V)d by 
the transfer functions Gl(U, v) and G2(u, v), respec- 
tively. The value of the transfer functions can be 
chosen so that either the diffuse regions or the Bragg 
reflexions are accounted for by a backward Fourier 
transformation. G(u, v) can also be chosen to transfer 
only a part of the diffuse region (Rahman, 1989). 

The transfer function can be expressed as a convo- 
lution (*) between the reciprocal-lattice function 
F(u, v) and a window function W(u, v), 

O(u, v)= F(u, v), W(u, v), (8) 

where u and v are continuous coordinates and F(u, v) 
is the well known reciprocal-lattice delta function, 

F(u, v ) = ~  6 ( u - h a * ,  v - k b * ) .  (9) 
h k 

The window function W(u, v) is responsible for 
the coordinate of the area that is considered for the 
back transformation. 

By application of the above-mentioned reconstruc- 
tion procedure, a real difference image S'(x ,y)  is 
obtained (Rahman & Weichert, 1990): 

S'(x, y) 

=~[Q(u,v)RGl(U,V)+AQ(u,V)dG:(u ,v)] .  (10) 
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If a number of different atoms are fully statistically 
distributed on the same .number of permitted sites of 
a space group (maximum entropy), then AQ(u, V)d 
is continuous and decreases monotonically with 
increasing (s in0)/A.  AQ(u,v) , ,  (m for Laue 
monotonic scattering) has a value at each point that 
is probably nonzero. Every unit cell is statistically 
surrounded by other cells with different scatter distri- 
butions. The X-ray diffuse intensity for an AB com- 
pound with NA atoms and Nn atoms statistically 
distributed on the a and/3  sites is (von Laue, 1960) 

Io = NmAmB(fa -- fB )2  
(11) 

mA= NA/ N, mB= NB/ N, N =  NA + Nn. 

A videographic simulation of three statistical distri- 
butions generated with randomly chosen start values 
are shown in Figs. 2(a),  (b), (c). The corresponding 
Fourier transformations are given below in the same 
figure and show a continuous diffuse background. 
This means that the atoms do not have any 
geometrical correlation and their short-range-order 
parameters (a~,,,,) are zero. In the case of only partly 
statistical distributions of various atoms within the 
unit cell (Fig. 2d),  the diffuse background is not 
continuous and its intensity decreases drastically 
around particular Bragg reflexions. 

Substituting (4) into (2) and (7) into (3) results in 
the following two new equations for the forward and 
backward Fourier transformations of a partly ordered 
structure: 

(Q(u, v))+ zaQ(u, v) 
L - 1  R - -1  

= LR -~ Y'. ~, [(~p(x, y ) ) +  a~p(x, y)] exp [ - ~ ] ,  
x=O y = 0  

(12) 

(q~(x, y))+ Aq~(x, y) 
L--1  R - -1  

= ~, ~, [Q(u,v)+AQ(u,v)]exp[g2] .  (13) 
u = 0  V=0 

a monotonic and relatively high diffuse background 
AQ(u, v),, (Rahman, 1992). In this case, the principal 
idea is that the diffuse region of a partly ordered 
structure AQ(u, V)d can be considered as a subset of 
AQ(u, V)m [AQ(u, V)d C AQ(u, V)m]. 

Image reconstruction of a disordered structure can 
be achieved by selective filtering of certain frequen- 
cies from ~Q(u, v)m by means of the transfer function 
Gz(u, v). The positions of these frequencies can be 
chosen from a given experimental diffraction pattern 
of a partly ordered structure. Setting G2(u, v ) =  0 for 
all other frequencies of AQ(u, v),,, and G~(u, v) = 1 

A further substitution in (13), with the right-hand 
side of (10) taken as a Fourier coefficient and 
AQ(u, V)d exchanged with AQ(u, v),,, results in the 
final equation for the reconstruction of a real structure 
from a randomly disordered structure, 

(q~(x, y))+ Aq~(x, y) 
L--1  R - - 1  

= ~. • Q(u, v)nGl(u, v) 
u=O v=O 

+ AQ(u, v)mG2(u, v) exp O, 

fl = 2zri(xu/ L + yv/  R ). (14) 

For a reconstruction of a real structure, a starting 
model in which the atoms are fully statistically dis- 
tributed must be used (Figs. 2a, b, c). This is, of 
course, a hypothetical case but it is necessary to obtain 

Fig. 2. (a), (b), (c) Videographic simulation of a random distribu- 
tion of two atoms (scatterers) A and B with different random 
starts and their Fourier transformations (lower part). (d) Ran- 
dom distribution of only the B atoms within the unit cell among 
five sites (see Fig. 3). FT: lower fight corner. 
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(Bragg reflexion) and performing a backward Fourier 
transformation [(14)], one can obtain a reconstructed 
real-structure image (partly ordered structure). All 
operations during a reconstruction procedure are 
performed interactively. The start model and the 
subsequent forward and backward Fourier trans- 
formations are controlled by a videographic display. 

A videographic representation of the forward 
Fourier transformation of the reconstructed (dif- 
fraction) image can then be compared with the 
experimental results. When applying (14) to a recon- 
struction, the software allows the manipulation of 
amplitude and phase of either Q(u, v)B or AQ(u, v),, 
in different ways, as pointed out in § 4.2. 

4. Examples 

To illustrate the facilities of the videographic method, 
a number of examples will be given. The first example 
considered in §§4.1 and 4.2 demonstrates how the 
method can be applied to evaluate the real structure 
from its average structure by either simulation or 
reconstruction and is discussed in some detail. The 
other examples, which are discussed briefly, demon- 
strate the superiority of the method compared with 
optical transforms when complicated disorder types 
are present. 

4.1. Simulation of  a real structure 

(a) Ordering of  a high-temperature phase. The 
average structure of a hypothetical AB compound is 
schematically shown in Fig. 3(a). The A atom 
occupies the (0, 0, 0) site and exhibits a scattering 

|) 
). 

average- al e *  
s t r u c t u r e  .5 B 

(a) 

s t ructure  var ian ts  

: HHHH 
q ) l ( x , y )  ~ ( x , y )  ~ ( x , y )  q ~  ( x , y ) ~ ( x , y )  

(b) 

// 
video--graphic 
representat ion 

// 
(c) 

// 
Fig. 3. (a )  Average structure of  an AB compound .  The  B atoms 

are r andomly  distr ibuted among  five sites ( f a - -0 .5  fA). (b) Five 
possible s tructure variants (configurations).  (c) The  video- 
graphic  representa t ion  o f  (b).  

Table 2. Combination probabilities (%) for a random 
distribution of  the B atoms (see Fig. 4a) 

Horizontal combinations Vertical combinations 
j \ i  1 2 3 4 5 j \ i  1 2 3 4 

1 20 20 20 20 20 1 20 20 20 20 20 
2 20 20 20 20 20 2 20 20 20 20 20 
3 20 20 20 20 20 3 20 20 20 20 20 
4 20 20 20 20 20 4 20 20 20 20 20 
5 20 20 20 20 20 5 20 20 20 20 20 

power a factor of two higher than the B atoms. At 
high temperatures, the B atoms are randomly dis- 
tributed among five possible positions as shown in 
Fig. 3(a). The decomposition of the average structure 
into n possible structure variants ~0j(x, y) is demon- 
strated in Figs. 3(b) [(5)]. A videographic representa- 
tion of the five possible structure variants as picture 
elements (pixels) is given in Fig. 3(c). The different 
scattering power of the A and B atoms is taken into 
consideration by various grey levels for each pixel 
representing the atoms. To build up the real structure 
at various ordering temperatures, a distribution func- 
tion or tables of values that contain the probabilities 
of combinations for h Wji and v Wji must be given. A 
random distribution of the B atoms can be simulated 
by assigning the same value of 20% to h Wji and v Wj~. 
The corresponding combination probabilities for a 
fully statistical distribution of the five structure 
variants are given in Table 2. 

From Table 2 it is clear that a structure variant with 
index j - - 1 , . . . ,  5 (Fig. 3b) can be followed in the 
horizontal and vertical directions by all other variants 
with the same probability. A videographic simulation 
after implementing this table in the software is shown 
on the left-hand side of Fig. 4(a).  The Fourier trans- 
formation (diffraction pattern) of the videographic 
simulation is shown on the right-hand side of Fig. 
4(a).  Besides the Bragg reflexions, the diffraction 
pattern shows a diffuse background. 

Fig. 4(a)  represents the real structure of a 
hypothetical high-temperature phase. If the com- 
pound is cooled below To, several ordering schemes 
of the B atoms can be obtained. Such an ordering 
scheme can be simulated by varying the values of 
h Wj~ and o Wj~ in the combination tables. For the next 
simulation, the following restrictions (selection rules) 
are proposed (Fig. 4b): 

1. The interatomic separations of the B atoms (in 
neighbouring cells) should be greater than 5a/6  or 
5b/6. 

2. Identical structure variants should not be in 
direct contact. 

If the above-mentioned restrictions are taken into 
consideration, a new combination table (Table 3) may 
be set up with the following probabilities: 

hWl5 , h w 3 1  , hw35 , v W l 2  , vw41  , v w 4 2 =  0 (rule 1) 

hWz, ~W z = 0  (rule 2). 
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The simulated real structure of the resulting ordering 
scheme is shown together with its diffraction pattern 
in Fig. 4(b). The diffraction pattern indicates a partial 
ordering of the structure by a periodic distribution 
of diffuse regions around the Bragg reflexions. 

Another ordering scheme can be obtained by selec- 
tively increasing particular combination probabilities 
and decreasing others as shown in Table 4. The result- 
ing real structure and its Fourier transformation are 
given in Fig. 4(c). 

Table 3. Probabilities (%) for the ordering scheme of 
Fig. 4(b) 

Horizonta l  combina t ions  Vertical combina t ions  

j \ i  1 2 3 4 5 j \ i  1 2 3 4 

1 0 33 33 33 0 1 0 0 33 33 33 
2 25 0 25 25 25 2 25 0 25 25 25 
3 0 50 0 50 0 3 25 25 0 25 25 
4 25 25 25 0 25 4 0 0 50 0 50 
5 25 25 25 25 0 5 25 25 25 25 0 

( b ) Modulated structures. A mathematical formula- 
tion of X-ray scattering intensities for various types 
of sine-wave-modulated crystal structures is given by 
Korekawa (1967). The main types of periodic modu- 
lation of a lattice are: 

(i) transverse displacement of atoms; 
(ii) longitudinal displacement of atoms; 

(iii) density modulation or variation of scattering 
power. 

Table 4. Probabilities (%) for the ordering scheme of 
Fig. 4(c) 

Hor izonta l  combina t ions  Vertical combina t ions  

j \ i  1 2 3 4 5 j \ i  1 2 3 4 

1 0 92 4 4 0 1 0 0 4 92 4 
2 4 0 88 4 4 2 4 0 4 4 88 
3 0 4 0 96 0 3 4 88 0 4 4 
4 4 4 4 0 88 4 0 0 96 0 4 
5 88 4 4 4 0 5 88 4 4 4 0 

Brhm (1977) extended the formulation of 
Korekawa (1967) to other wave forms and pointed 
out that the probability of site occupancy is an excep- 
tional case of the density modulation. 

A videographic simulation of a transverse displace- 
ment of atoms with a superimposed variation of the 
scattering power is shown in Fig. 5. A scattering- 
power variation of two parallel sine waves with a 
phase shift is illustrated in Fig. 6. 

The structure simulations of Figs. 5 and 6 were 
carried out interactively. These represent an idealized 
model of modulation (for teaching purposes). A more 
realistic simulation of the variation of the scattering 
power produced by a site-occupancy distribution of 
different scatterers is modelled schematically in Fig. 
7. The four structure variants differ only in their 
scattering power. To distribute the structure variants 
of Fig. 7 to obtain a modulation of the site occupancy, 
the following selections of the combination prob- 
abilities are made: 

h Wjj, v Wjj = 0 (diagonal elements) 

h W l 2  , h W l 3  , h w 3 4  , hw41  = v W l 2  , vw23  , uW34 , vW41 

= 96% 

Fig. 4. Videograph ic  s imula t ion  o f  different order ing  schemes.  
( a )  (Left)  R a n d o m  dis t r ibut ion o f  the B atoms.  (Right)  Four ie r  
t r ans fo rma t ion  (FT).  (b)  (Left)  Part ial  ordering.  (Right)  FT. 
(c) (Left)  Part ial  order ing but  with different order ing  scheme 
to (b).  (Right)  FT. 

and all other probabilities are each set to 2%. The 
resulting tables are identical for the horizontal and 
vertical combinations as shown in Table 5. The result- 
ing simulation represents a superstructure due to a 
quasiperiodic variation of the scattering power of 
atoms distributed among the same sites. The super- 
structure is achieved by a preferential selection of the 
combination probabilities for a sequence of structure 
variants. 

With the preferred combination taken into 
account, the sequence of the superstructure can be 
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schematically represented as 

1 2 3 4 1 . . .  

2 3 4 1 2 . . .  

3 4 1 2 3 . . . .  

4 1 2 3 4 . . .  

1 2 3 4 1 . . .  

: : 

A videographic simulation of this superstructure and 
its Fourier transformation are given in Fig. 8. The 
s i m u l a t i o n  s h o w s  p l a n e s  w i t h  e q u a l  p h a s e  shif ts  run-  
n i n g  p a r a l l e l  to  [110] ( K o r e k a w a ,  1967). 

(a) 

( c) Antiphase domains. M a n y  o r d e r / d i s o r d e r  p h a s e  
t r a n s i t i o n s  a re  a c c o m p a n i e d  by  a d o m a i n  f o r m a t i o n  
in  a crysta l .  I n  s o m e  c o m p o u n d s  ( i n t e r m e t a l l i c  
p h a s e s ) ,  t h e  d o m a i n s  a re  in  an  a n t i p h a s e  r e l a t i o n s h i p  

:::::::::::::::: : : : : : : : : : : : : : : t i  I I ~:::::::;::::i~'i::~II~ 
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(a) 

(b) 

Fig. 6. (a) Videographic simulation of two parallel density waves 
with @o1,1 = - M J 4  after Korekawa (1967). (b) FT. 

(b) 

Fig. 5. (a) Videographic simulation of a transverse wave superim- 
posed on a density wave. (b) FT. 

5 0  3 '  ~" 

t 
5 0  

1 O 0  

0 4 

50 

i -~00 

Fig. 7. Structure variants for the videographic simulation of a 
modulation by varying the scattering power. The radius of the 
black circle is proportional to the scattering power or the pixel 
intensity, which varies between 50 and 200. 
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Table 5. Combination probabilities (%) of Fig. 8 

Horizontal combinations Vertical combinations 
j \ i  1 2 3 4 j \ i  1 2 3 4 

1 0 96 2 2 1 0 96 2 2 
2 2 0 96 2 2 2 0 96 2 
3 2 2 0 96 3 2 2 0 96 
4 96 2 2 0 4 96 2 2 0 

and are distributed in a disordered matrix (Cowley, 
1965). The domain size is dependent on heat 
treatment. 

Table 6 shows different types of two-dimensional 
lattices and unit-cell parameters for the matrix and 
antiphase domains. The videographic simulations of 
the antiphase cluster of the five types given in Table 
6 are shown with their Fourier transformations in Fig. 
9. In all simulations the antiphase boundary runs 
parallel to [010]. The diffraction pattern of the first 

:? 
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(a )  

(b) 

Fig. 8. ( a )  S imula t ion  o f  densi ty  waves  with the same  phase  shift 
paral lel  to [110]. (b)  FT. 

Table 6. Lattice type and unit-cell parameters of  matrix 
and antiphase domains 

Matr ix  Ant iphase  d o m a i n  
No. Cell Cell 

(Fig. 9) Latt ice pa r ame te r s  Lattice pa r ame te r s  

1 p a, b p 2a, 2b 
2 p a, b c 2a, 2b 
3 c a , b  p a , b  
4 c a, b c 2a, 2b  
5 c a, b c a , b  

four simulations shows weak and diffuse superstruc- 
ture reflexions. Their positions in the diffraction pat- 
tern are in accordance with the systematic presence 
of the antiphase-domain lattice type. Normally, such 
reflexions split into doublets according to the interfer- 
ence function (Raether, 1952). The splitting direction 
is perpendicular to the antiphase boundaries. A com- 
plete discussion of the relationship between domain 
sizes and their distribution in a matrix on the super- 
structure reflex shape is given by Rahman (1991). 

The contribution of the (precipitate) antiphase 
domains to the diffraction pattern in Fig. 9, example 
5 is not visible because they are superimposed on the 
Bragg peak of the matrix. However, depending on 
the domain size and accumulation, the Bragg peak 
could have a diffuse corona. 

4.2. Reconstruction of  a real structure 

The reconstruction of a real structure is based on 
the idea that the part of a diffuse region in the 
reciprocal space of such a structure is a subset of 
the monotone diffuse background of a randomly 
disordered structure [AQ(u, V)d c AQ(u, v)m]. Con- 
sequently, the atoms of starting model for a recon- 
struction must be randomly distributed to obtain a 
monotone continuous diffuse background in its 
diffraction pattern (forward Fourier transformation, 
Rahman 1992) (Figs. 2a, b, c). The diffuse back- 
ground is a complex quantity (A+  iB), whereas the 
transfer function G2(u, v ) > 0  is a real quantity. If 
G2(u, v) is multiplied by (A+ iB), only an amplitude 
change is obtained. Amplitude and phase changes 
can be achieved when the multiplication in (14) is 
modified to G2,,(u, v)A+ G2b(U, v)iB, with use of a 
separate window function. The indices a and b denote 
the real and imaginary parts, respectively. The above- 
mentioned multiplication procedure for the manipu- 
lation of amplitude and phase by a reconstruction is 
implemented in the software and can be performed 
interactively whilst viewing the image on a high- 
resolution monitor. 

( a) Short-range order and the formations of  anti- 
phase domains. HRTEM investigations of order/dis- 
order phase transitions show that the degree of 
diffusivity of the superstructure reflexions is depen- 
dent on the antiphase domain size (Schleiter, Kroll 
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& Rahman 1989). With increasing temperature, the 
domain sizes decrease and they are distributed in a 
disordered matrix. 

For the reconstruction of such real-structure 
images, a starting model with two different scatterers 

(atoms) is chosen. The atoms are randomly dis- 
tributed at the corners of a primitive cubic cell. The 
model and the corresponding forward Fourier trans- 
formation are shown respectively on the left-hand 
and right-hand sides of Fig. 10(a). To reconstruct 
short-range order with antiphase domain formations, 
a circular pixel group is selected at the superlattice 
reflexion positions (diffuse superlattice reflexion). 
This procedure is demonstrated in Fig. 10(b) for two 

Fig. 9. (Left) Videographic simulation of antiphase domain 
clusters in a matrix (see Table 6). (Right) FT's. 

Fig. 10. (a) (Left) Random distribution of two scatterers (starting 
model). (Right) FT. (b) Selected diffuse regions for two recon- 
structions with different positions of the superlattice reflexions. 
The positions are marked only on one half of the diffraction 
pattern. (c) (Left) Reconstructed image showing antiphase 
domains with boundaries parallel to [110] and [110]. (Right) 
Antiphase domain boundary parallel to [1"00] and [010]. 
(d) FT's from reconstructed images. 



reconstructions. The selected areas from the diffuse 
background are marked by white squares (only in 
one half of the diffraction patterns). In the first 
example, they are positioned at the centre of the 
absent 110 and 110 reflexions [Fig. 10(b), left] and, 
in the second example, at the centre of the 100 and 
010 reflexions [Fig. 10(b), right]. The backward 
Fourier transformations are performed by selecting 
G2(u, v) = 10 and Gl(U, v) = 1. The reconstructed 
structure images for the two examples are given in 
Fig. 10(c). Both images show a distribution of anti- 
phase domains in a disordered matrix. In the first 
case [Fig. 10(c), left], the antiphase domain boun- 
daries run parallel to [110] and [110]. In the second 
case [Fig. 10(c) right], they run parallel to [100] and 
[010]. To confirm the results of the reconstruction 

(a) 

! ~ , , ~  . . . .  

o .  . . . .  

(b) 
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(b) 

(c) 

(d) 

Fig. 11. (a) (Left) Starting model. (Right) FT. (b) Selected posi- 
tions of the satellite reflexions for two modulation directions. 
(c) Reconstructed images. (d) FYs of the reconstructed images. 

(c) 

(d) O 

Fig. 12. (a) Starting model. (b) Fourier transform of the start model 
with marked satellite positions. (c) Reconstructed image showing 
variation of intensities in horizontal rows. (d) Forward Fourier 
transformation showing the satellite reflexions around the absent 
110 reflexion group. 
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procedure ,  the images of  Fig. 10(c) are Four ier  trans- 
formed as shown in Fig. 10(d).  The positions of  the 
diffuse superlat t ice reflexions are fully in accordance  
with the s imulat ion given in Fig. 9 for different anti- 
phase -domain  types. 

nat ion probabili t ies (Rahman ,  1993a, b). From such 
three-dimensional  simulations,  vector correlat ions 
can be est imated and compared  with experimental  
results. 

(b )  D e n s i t y  modu la t ion .  For the reconstruct ion of  
a sine-wave modula t ion  of  the scattering power,  an 
identical start  model  as in the foregoing example  is 
used (Fig. l l a ) .  The positions of  the satellite 
reflexions for two different modula t ion  directions are 
selected symmetrical ly with respect to the Bragg 
reflexions as shown in Fig. l l ( b )  (Korekawa ,  1967). 
A good match for a density modula t ion  is achieved 
by assigning values 16 and 1 to  G2(u  , v) and Gl(U,  v) ,  
respectively. The reconstructed real-structure images 
are shown in Fig. l l ( c )  for a modula t ion  direction 
parallel to [010] [Fig. l l ( c ) ,  left] and [ i l 0 ]  [Fig. 
l l ( c ) ,  right]. A forward  Fourier  t ransformat ion  of  
the reconstructed images results in diffraction pat- 
terns (Fig. 1 l d )  indicating the type of  modula t ion  as 
reported by Korekawa  (1967). 

( c ) M o d u l a t i o n  through probabi l i ty  var ia t ion  o f  the 
si te  occupancy.  In the foregoing example,  the satellite 
reflexions are posi t ioned symmetrical ly with respect 
to a present  Bragg reflexion. In several other  cases 
(mullite Al2[Al2+2xSi2-2x]Olo-x; Guse  & Saalfeld,  
1976; Cameron ,  1977), the satellite reflexions are posi- 
t ioned symmetr ical ly  with respect to an absent  Bragg 
reflexion. An example  of  such a case is reconstructed 
in Fig. 12. The regions for the reconstruct ion are 
posi t ioned on the left- and r ight-hand sides of  the 
absent  110 reflexion groups (Fig. 12b). From the 
reconstructed image (Fig. 12c), it can easily be seen 
that  the intensity in a horizontal  row varies smoothly.  
This observat ion can be interpreted (B/Shm, 1977) as 
a variat ion of  the probabil i ty of  a site occupancy,  
which represents a special case of  density modula t ion  
( R a h m a n  & Weichert ,  1990). 

5. Concluding remarks 

The examples  discussed in §4 demonst ra te  the wide 
appl icat ion range of  the videographic  method.  By 
represent ing the real structure as a v ideographic  
image, the whole content  of  a structure configurat ion 
can be displayed as picture elements with different 
grey levels. By this procedure ,  complicated disorder  
phenomena  in which more than one disorder  mechan-  
ism is present  are able to be investigated. 

Both s imulat ion and reconstruct ion can be appl ied 
to discover a real-structure configuration. Also, a 
combinat ion  of  both methods  is useful. Other  interest- 
ing features include a facility to manipula te  phase 
and ampl i tude  by a reconstruct ion and the s imulat ion 
of  three-dimensional  models  using three-sided combi- 
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Abstract 

If the videographic simulation method is applied, the 
real structure configuration of the domains formed 
in a partially ordered AuCu3 crystal is established. 
Each domain is formed by four ordered muCu3 
blocks. The blocks are interconnected crosswise by 
two different domain boundaries, namely the pre- 
ferred antiphase domain boundary and the new 
domain interface structure ( I  cells of the composition 
Au2Cu6). Six symmetry-related domains exist with 
the above-mentioned domain structure. An Aufu3 
crystal that shows the characteristic two- and four- 
fold splitting of the superlattice reflexions in its 
diffraction pattern (of partial order) contains at least 
two such domain configurations at 90 ° relative to each 
other. A two- and three-dimensional simulation using 
different combination probabilities and structure 
variants allows a quantitative description of the real 
configuration of the muCu 3 structure at different tem- 
peratures to be made. 

their sites with the Cu atoms (Fig. 1). The intensities 
of the Bragg reflexions with mixed indices (superlat- 
tice reflexions) decrease with increasing temperature. 
At the critical temperature, long-range order vanishes 
( S = 0 )  and the intensities of the superlattice 
reflexions (ltoo, Ii to, I3oo etc.) are almost zero. Above 
T,., only short-range-order phenomena are present 
(Edmunds,  Hinde & Lipson, 1947; Wilson, 1947; 
Cowley, 1950; Edmunds & Hinde, 1952; Chapman,  
1956). 

Around the positions of the superlattice reflexions 
a diffuse background with a characteristic distribution 
(shape) is present (Fig. 2c) (Wilson, 1947; Cowley, 
1950). 

An m u f u  3 crystal cooled from about 873 K to a 
temperature below 7",. (about 373 K) gives rise to a 
fine structure of the superlattice reflexions (of partial 
order) as schematically shown in Fig. 2(b) (Raether, 
1952; Yamaguchi, Watanabe & Ogawa, 1961; Sinclair 
& Thomas, 1975). Inspection of the a ' b *  plane 
reveals that superlattice reflexions with h and k mixed 

I. Introduction 

Many X-ray investigations have been made to study 
the order /disorder  transitions of binary alloys. These 
include the interpretation of the diffuse scattering 
from disordered crystals. For this purpose, simple 
cubic A B  and A B  3 structures (intermetallic phases) 
were used. A classic example is the copper-gold alloy 
AuCu 3. This compound exhibits, compared to other 
intermetallic compounds e.g. /3-CuZn, a relatively 
low critical temperature (To =663 K) and a large 
difference in scattering powers (fAu=2.8fCu). The 
above-mentioned properties make AuCu3 an interest- 
ing phase for many investigations in the field of short- 
and long-range-order phenomena (Sykes & Jones, 
1936; Jones & Sykes, 1938; Cowley, 1950; Chapman,  
1956; Wilson, 1962; Guinier, 1963; Warren, 1968). 

AuCu 3 exhibits a simple cubic ordered structure at 
room temperature ( a = 3 . 7 2 A ,  see Fig. l a ) .  With 
increasing temperature the Au atoms can exchange 
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Fig. 1. (a) AuCu 3 structure variants. (b) Antiphase domain bound- 
ary of the favoured type. (c), (d) Antiphase domain boundary 
of nonfavoured types. 
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